Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Neuropeptides ; 99: 102328, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36827755

RESUMO

Multiple factors regulate the regeneration of craniofacial bone defects. The nervous system is recognized as one of the critical regulators of bone mass, thereby suggesting a role for neuronal pathways in bone regeneration. However, in the context of craniofacial bone regeneration, little is known about the interplay between the nervous system and craniofacial bone. Sensory and sympathetic nerves interact with the bone through their neuropeptides, neurotransmitters, proteins, peptides, and amino acid derivates. The neuron-derived factors, such as semaphorin 3A (SEMA3A), substance P (SP), calcitonin gene-related peptide (CGRP), neuropeptide Y (NPY), and vasoactive intestinal peptide (VIP), possess a remarkable role in craniofacial regeneration. This review summarizes the roles of these factors and recently published factors such as secretoneurin (SN) and spexin (SPX) in the osteoblast and osteoclast differentiation, bone metabolism, growth, remodeling and discusses the novel application of nerve-based craniofacial bone regeneration. Moreover, the review will facilitate understanding the mechanism of action and provide potential treatment direction for the craniofacial bone defect.


Assuntos
Peptídeo Relacionado com Gene de Calcitonina , Neuropeptídeo Y , Peptídeo Relacionado com Gene de Calcitonina/metabolismo , Neuropeptídeo Y/metabolismo , Peptídeo Intestinal Vasoativo/metabolismo , Neurônios/metabolismo , Osso e Ossos/metabolismo , Substância P/metabolismo
2.
Tissue Eng Regen Med ; 19(1): 189-202, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34951679

RESUMO

BACKGROUND: The neural regulation of bone regeneration has emerged recently. Spexin (SPX) is a novel neuropeptide and regulates multiple biological functions. However, the effects of SPX on osteogenic differentiation need to be further investigated. Therefore, the aim of this study is to investigate the effects of SPX on osteogenic differentiation, possible underlying mechanisms, and bone regeneration. METHODS: In this study, MC3T3-E1 cells were treated with various concentrations of SPX. Cell proliferation, osteogenic differentiation marker expressions, alkaline phosphatase (ALP) activity, and mineralization were evaluated using the CCK-8 assay, reverse transcriptase-quantitative polymerase chain reaction (RT-qPCR), ALP staining, and alizarin red S staining, respectively. To determine the underlying molecular mechanism of SPX, the phosphorylation levels of signaling molecules were examined via western blot analysis. Moreover, in vivo bone regeneration by SPX (0.5 and 1 µg/µl) was evaluated in a calvarial defect model. New bone formation was analyzed using micro-computed tomography (micro-CT) and histology. RESULTS: The results indicated that cell proliferation was not affected by SPX. However, SPX significantly increased ALP activity, mineralization, and the expression of genes for osteogenic differentiation markers, including runt-related transcription factor 2 (Runx2), Alp, collagen alpha-1(I) chain (Col1a1), osteocalcin (Oc), and bone sialoprotein (Bsp). In contrast, SPX downregulated the expression of ectonucleotide pyrophosphatase/phosphodiesterase 1 (Enpp1). Moreover, SPX upregulated phosphorylated mitogen-activated protein kinase kinase (MEK1/2) and extracellular signal-regulated kinase (ERK1/2). In vivo studies, micro-CT and histologic analysis revealed that SPX markedly increased a new bone formation. CONCLUSION: Overall, these results demonstrated that SPX stimulated osteogenic differentiation in vitro and increased in vivo bone regeneration via the MEK/ERK pathway.


Assuntos
Neuropeptídeos , Osteogênese , Animais , Regeneração Óssea , Diferenciação Celular , Sistema de Sinalização das MAP Quinases , Camundongos , Quinases de Proteína Quinase Ativadas por Mitógeno/metabolismo , Quinases de Proteína Quinase Ativadas por Mitógeno/farmacologia , Osteoblastos , Microtomografia por Raio-X
3.
Nutr Res Pract ; 15(5): 541-554, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34603603

RESUMO

BACKGROUND/OBJECTIVES: Isoflavones (ISFs) are effective in preventing bone loss, but not effective enough to prevent osteoporosis. Mixtures of soy ISF and lecithin (LCT) were prepared and characterized in an attempt to improve the bone loss. MATERIALS/METHODS: The daidzein (DZ) and genistein (GN) solubility in soy ISF were measured using liquid chromatography-mass spectrometry. The change in the crystalline characteristics of soy ISF in LCT was evaluated using X-ray diffraction analysis. Pharmacokinetic studies were conducted to evaluate and compare ISF bioavailability. Animal studies with ovariectomized (OVX) mice were carried out to estimate the effects on bone loss. The Student's t-test was used to evaluate statistical significance. RESULTS: The solubility of DZ and GN in LCT was 125.6 and 9.7 mg/L, respectively, which were approximately 25 and 7 times higher, respectively, than those in water. The bioavailability determined by the area under the curve of DZ for the oral administration (400 mg/kg) of soy ISF alone and the soy ISF-LCT mixture was 13.19 and 16.09 µg·h/mL, respectively. The bone mineral density of OVX mice given soy ISF-LCT mixtures at ISF doses of 60 and 100 mg/kg daily was 0.189 ± 0.020 and 0.194 ± 0.010 g/mm3, respectively, whereas that of mice given 100 mg/kg soy ISF was 0.172 ± 0.028 g/mm3. The number of osteoclasts per bone perimeter was reduced by the simultaneous administration of soy ISF and LCT. CONCLUSIONS: The effect of preventing bone loss and osteoclast formation by ingesting soy ISF and LCT at the same time was superior to soy ISF alone as the bioavailability of ISF may have been improved by the emulsification and solvation of LCT. These results suggest the possibility of using the combination of soy ISF and LCT to prevent osteoporosis.

4.
Tissue Eng Regen Med ; 18(2): 315-324, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33145742

RESUMO

BACKGROUND: This study investigates the effects of a neuropeptide, secretoneurin (SN), on bone regeneration in an experimental mouse model. METHODS: The effects of SN on cell proliferation, osteoblast marker genes expression, and mineralization were evaluated using the CCK-8 assay, quantitative reverse transcriptase polymerase chain reaction (RT-PCR), and alizarin red S staining, respectively. To examine the effects of SN on bone regeneration in vivo, bone defects were created in the calvaria of ICR mice, and 0.5 or 1 µg/ml SN was applied. New bone formation was analyzed by micro-computed tomography (micro-CT) and histology. New blood vessel formation was assessed by CD34 immunohistochemistry. RESULTS: SN had no significant effect on proliferation and mineralization of MC3T3-E1 cells. However, SN partially induced the gene expression of osteoblast differentiation markers such as runt-related transcription factor 2, alkaline phosphatase, collagen type I alpha 1, and osteopontin. A significant increase of bone regeneration was observed in SN treated calvarial defects. The bone volume (BV), BV/tissue volume, trabecular thickness and trabecular number values were significantly increased in the collagen sponge plus 0.5 or 1 µg/ml SN group (p < 0.01) compared with the control group. Histologic analysis also revealed increased new bone formation in the SN-treated groups. Immunohistochemical staining of CD34 showed that the SN-treated groups contained more blood vessels compared with control in the calvarial defect area. CONCLUSION: SN increases new bone and blood vessel formation in a calvarial defect site. This study suggests that SN may enhance new bone formation through its potent angiogenic activity.


Assuntos
Regeneração Óssea , Neuropeptídeos , Osteogênese , Secretogranina II , Animais , Camundongos , Camundongos Endogâmicos ICR , Neuropeptídeos/fisiologia , Secretogranina II/fisiologia , Crânio/diagnóstico por imagem , Microtomografia por Raio-X
5.
Molecules ; 25(19)2020 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-32977643

RESUMO

Bone growth during childhood and puberty determines an adult's final stature. Although several prior studies have reported that fermented oyster (FO) consisting of a high amount of gamma aminobutyric acid can be attributed to bone health, there is no research on the efficacy of FO on growth regulation and the proximal tibial growth plate. Therefore, in this study, we investigated the effect of FO oral administration on hepatic and serum growth regulator levels and the development of the proximal tibial growth plate in young Sprague-Dawley rats. Both oral administration of FO (FO 100, 100 mg/kg FO and FO 200, 200 mg/kg FO) and subcutaneous injection of recombinant human growth hormone (rhGH, 200 µg/kg of rhGH) for two weeks showed no toxicity. Circulating levels of growth hormone (GH) significantly increased in the FO 200 group. The expression and secretion of insulin-like growth factor-1 (IGF-1) and insulin-like growth factor binding protein-3 (IGFBP-3) were enhanced by FO administration. FO administration promoted the expression of bone morphogenic proteins IGF-1 and IGFBP-3 in the proximal tibial growth plate. This positive effect of FO resulted in incremental growth of the entire plate length by expanding the proliferating and hypertrophic zones in the proximal tibial growth plate. Collectively, our results suggested that oral administration of FO is beneficial for bone health, which may ultimately result in increased height.


Assuntos
Crassostrea/química , Fermentação , Lâmina de Crescimento/efeitos dos fármacos , Lâmina de Crescimento/crescimento & desenvolvimento , Tíbia/efeitos dos fármacos , Tíbia/crescimento & desenvolvimento , Ácido gama-Aminobutírico/química , Animais , Proteínas Morfogenéticas Ósseas/metabolismo , Crassostrea/metabolismo , Regulação da Expressão Gênica/efeitos dos fármacos , Hormônio do Crescimento/sangue , Lâmina de Crescimento/metabolismo , Proteína 3 de Ligação a Fator de Crescimento Semelhante à Insulina/sangue , Fator de Crescimento Insulin-Like I/metabolismo , Tamanho do Órgão/efeitos dos fármacos , Ratos , Ratos Sprague-Dawley
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...